Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Hypertens Res ; 45(5): 846-855, 2022 05.
Article in English | MEDLINE | ID: covidwho-2311278

ABSTRACT

To fight the COVID-19 pandemic, messenger RNA (mRNA) vaccines were the first to be adopted by vaccination programs worldwide. We sought to investigate the short-term effect of mRNA vaccine administration on endothelial function and arterial stiffness. Thirty-two participants (mean age 37 ± 8 years, 20 men) who received the BNT162b2 mRNA COVID-19 vaccine were studied in three sessions in a sequence-randomized, sham-controlled, assessor-blinded, crossover design. The primary outcome was endothelial function (assessed by brachial artery flow-mediated dilatation (FMD)), and the secondary outcomes were aortic stiffness (evaluated with carotid-femoral pulse wave velocity (PWV)) and inflammation (measured by high-sensitivity C-reactive protein (hsCRP) in blood samples). The outcomes were assessed prior to and at 8 h and 24 h after the 1st dose of vaccine and at 8 h, 24 h, and 48 h after the 2nd dose. There was an increase in hsCRP that was apparent at 24 h after both the 1st dose (-0.60 [95% confidence intervals [CI]: -1.60 to -0.20], p = 0.013) and the 2nd dose (maximum median difference at 48 h -6.60 [95% CI: -9.80 to -3.40], p < 0.001) compared to placebo. The vaccine did not change PWV. FMD remained unchanged during the 1st dose but decreased significantly by 1.5% (95% CI: 0.1% to 2.9%, p = 0.037) at 24 h after the 2nd dose. FMD values returned to baseline at 48 h. Our study shows that the mRNA vaccine causes a prominent increase in inflammatory markers, especially after the 2nd dose, and a transient deterioration of endothelial function at 24 h that returns to baseline at 48 h. These results confirm the short-term cardiovascular safety of the vaccine.


Subject(s)
COVID-19 , Vascular Stiffness , Adult , BNT162 Vaccine , Brachial Artery , C-Reactive Protein/metabolism , COVID-19/prevention & control , COVID-19 Vaccines , Cross-Over Studies , Female , Humans , Male , Middle Aged , Pandemics , Pulse Wave Analysis , RNA, Messenger , Vaccines, Synthetic , mRNA Vaccines
2.
J Nucl Cardiol ; 2022 May 02.
Article in English | MEDLINE | ID: covidwho-2285668

ABSTRACT

AIM: Arterial involvement has been implicated in the coronavirus disease of 2019 (COVID-19). Fluorine 18-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) imaging is a valuable tool for the assessment of aortic inflammation and is a predictor of outcome. We sought to prospectively assess the presence of aortic inflammation and its time-dependent trend in patients with COVID-19. METHODS: Between November 2020 and May 2021, in this pilot, case-control study, we recruited 20 patients with severe or critical COVID-19 (mean age of 59 ± 12 years), while 10 age and sex-matched individuals served as the control group. Aortic inflammation was assessed by measuring 18F-FDG uptake in PET/CT performed 20-120 days post-admission. Global aortic target to background ratio (GLA-TBR) was calculated as the sum of TBRs of ascending and descending aorta, aortic arch, and abdominal aorta divided by 4. Index aortic segment TBR (IAS-TBR) was designated as the aortic segment with the highest TBR. RESULTS: There was no significant difference in aortic 18F-FDG PET/CT uptake between patients and controls (GLA-TBR: 1.46 [1.40-1.57] vs. 1.43 [1.32-1.70], respectively, P = 0.422 and IAS-TBR: 1.60 [1.50-1.67] vs. 1.50 [1.42-1.61], respectively, P = 0.155). There was a moderate correlation between aortic TBR values (both GLA and IAS) and time distance from admission to 18F-FDG PET-CT scan (Spearman's rho = - 0.528, P = 0.017 and Spearman's rho = - 0.480, p = 0.032, respectively). Patients who were scanned less than or equal to 60 days from admission (n = 11) had significantly higher GLA-TBR values compared to patients that were examined more than 60 days post-admission (GLA-TBR: 1.53 [1.42-1.60] vs. 1.40 [1.33-1.45], respectively, P = 0.016 and IAS-TBR: 1.64 [1.51-1.74] vs. 1.52 [1.46-1.60], respectively, P = 0.038). There was a significant difference in IAS- TBR between patients scanned ≤ 60 days and controls (1.64 [1.51-1.74] vs. 1.50 [1.41-1.61], P = 0.036). CONCLUSION: This is the first study suggesting that aortic inflammation, as assessed by 18F-FDG PET/CT imaging, is increased in the early post COVID phase in patients with severe or critical COVID-19 and largely resolves over time. Our findings may have important implications for the understanding of the course of the disease and for improving our preventive and therapeutic strategies.

SELECTION OF CITATIONS
SEARCH DETAIL